Question-100
Consider a matrix \(\displaystyle A=uv^{T}\) where \(\displaystyle u=( 1,2)\) and \(\displaystyle v=( 1,1)\). Find the largest eigenvalue of \(\displaystyle A\).
\(3\)
- Let \(\displaystyle ( \lambda ,w)\) be an eigenpair of \(\displaystyle A\) with \(\displaystyle ||w||=1\).
\[ \begin{aligned} Aw & =\lambda w\\ \Longrightarrow u\left( v^{T} w\right) & =\lambda w \end{aligned} \]
If \(\displaystyle \lambda =0\), then \(\displaystyle v^{T} w=0\). It follows that \(\displaystyle v\perp w\). From this we see that any non-zero vector orthogonal to \(\displaystyle v\) is an eigenvector with eigenvalue \(\displaystyle 0\).
If \(\displaystyle \lambda \neq 0\), then \(\displaystyle u\) and \(\displaystyle w\) are dependent. \(\displaystyle w\) has to be some multiple of \(\displaystyle u\). Calling \(\displaystyle w=ku\), \(\displaystyle k\neq 0\), we get:
\[ \begin{aligned} k\left( v^{T} u\right) u & =\lambda ku\\ \Longrightarrow \lambda & =v^{T} u \end{aligned} \]