Question-46
idempotent matrix
Select all true statements concerning an idempotent matrix \(A\).
Answer
Solution
If \(\displaystyle A\) is idempotent, then \(\displaystyle A^{2} =A\).
- It follows by induction that \(\displaystyle A^{n} =A\) for \(\displaystyle n\geqslant 2\) and \(\displaystyle n\in \mathbb{N}\).
- If \(\displaystyle A\) is invertible, we have:
\[\begin{equation*} \begin{aligned} A & =AI\\ & =AAA^{-1}\\ & =A^{2} A^{-1}\\ & =AA^{-1}\\ & =I \end{aligned} \end{equation*}\]
- If \(\displaystyle ( \lambda ,v)\) is an eigenpair of \(\displaystyle A\):
\[\begin{equation*} \begin{aligned} A^{2} v & =Av\\ \lambda ^{2} v & =\lambda v\\ \lambda ( \lambda -1) v & =0 \end{aligned} \Longrightarrow \lambda =0,1 \end{equation*}\]