Question-18
Exponential Distribution
Suppose a random variable \(X\) follows an exponential distribution with mean 5. If \(P(X \leq k) = 0.95\), then find the value of \(k\).
Hint
If \(X \sim Exp(\lambda),\) then \(P(X \leq a) = 1- e^{-\lambda a}\)
Answer
Solution
\(P(X \leq k) = 0.95\)
\(1- e^{-k/5} = 0.95\)
\(e^{-k/5} = 0.05\)
\(e^{k/5} = \dfrac{1}{0.05} = 20\)
\(k/5 = \ln(20)\)
\(k = 5\ln(20)\)