Question-94
symmetric matrix
Consider these two statements:
- S1: The sum of two symmetric matrices is a symmetric matrix.
- S2: The product of two symmetric matrices is a symmetric matrix.
Select the correct option.
Answer
Solution
S1 is true and S2 is false. If \(\displaystyle A,B\) are symmetric, then:
\[ \displaystyle ( A+B)^{T} =A^{T} +B^{T} =A+B \]
A counter-example for S2:
\[ \begin{equation*} A=\begin{bmatrix} 1 & 0\\ 0 & 0 \end{bmatrix} ,\ B=\begin{bmatrix} 1 & 1\\ 1 & 1 \end{bmatrix} \end{equation*} \]
Then:
\[ \begin{equation*} AB=\begin{bmatrix} 1 & 1\\ 0 & 0 \end{bmatrix} \end{equation*} \]
Clearly, \(\displaystyle AB\) is not symmetric.