Question-24
differentiability
Consider: \[\begin{equation*} f( x) =\frac{x^{4} +x^{2} +1}{x^{2} +x+1} \end{equation*}\] If \(\displaystyle f^{\prime }( x) =ax+b\), find \(\displaystyle a+b\).
Hint
Polynomial long division
Answer
\(1\)
Solution
Using the identity:
\[\begin{equation*} x^{4} +x^{2} +1=\left( x^{2} +x+1\right)\left( x^{2} -x+1\right) \end{equation*}\] we have:
\[\begin{equation*} f( x) =x^{2} -x+1 \end{equation*}\]
From this, we get \(\displaystyle f^{\prime }( x) =2x-1\). Thus \(\displaystyle a=2,b=-1\) and \(\displaystyle a+b=1\).