Question-61
Consider the following square matrix of order \(\displaystyle n\) that is given by:
\[ \begin{equation*} A=( x-1) I+vv^{T} \end{equation*} \]
Here, \(\displaystyle x\in ( 1-\epsilon ,1+\epsilon )\) for \(\displaystyle \epsilon \ll 1\), \(\displaystyle v=( 1,\cdots ,1)\) is a vector of ones and \(\displaystyle I\) is the identity matrix. Which of the following are true?
Take a simple \(3 \times 3\) or \(4 \times 4\) matrix and perform row reduction. Generalise.
Let us take a look at a simple case of \(\displaystyle n=4\). \(\displaystyle vv^{T}\) is just a matrix of ones.
\[ \begin{equation*} \begin{bmatrix} x-1 & 0 & 0 & 0\\ 0 & x-1 & 0 & 0\\ 0 & 0 & x-1 & 0\\ 0 & 0 & 0 & x-1 \end{bmatrix} +\begin{bmatrix} 1 & 1 & 1 & 1\\ 1 & 1 & 1 & 1\\ 1 & 1 & 1 & 1\\ 1 & 1 & 1 & 1 \end{bmatrix} =\begin{bmatrix} x & 1 & 1 & 1\\ 1 & x & 1 & 1\\ 1 & 1 & x & 1\\ 1 & 1 & 1 & x \end{bmatrix} \end{equation*} \]
If \(\displaystyle x=1\), this is clearly a matrix of rank \(\displaystyle 1\). So let us assume that \(\displaystyle x\neq 1\). We now proceed with row reduction:
Step-1
\[ \begin{equation*} \begin{bmatrix} x & 1 & 1 & 1\\ 1 & x & 1 & 1\\ 1 & 1 & x & 1\\ 1 & 1 & 1 & x \end{bmatrix}\xrightarrow{R_{4}\rightarrow R_{4} +R_{3} +R_{2} +R_{1}}\begin{bmatrix} x & 1 & 1 & 1\\ 1 & x & 1 & 1\\ 1 & 1 & x & 1\\ x+3 & x+3 & x+3 & x+3 \end{bmatrix} \end{equation*} \]
Step-2
Since \(\displaystyle x\in ( 1-\epsilon ,1+\epsilon )\) for a small \(\displaystyle \epsilon\), \(\displaystyle x+3\neq 0\). This allows us to do the following row operation:
\[ \begin{equation*} \begin{bmatrix} x & 1 & 1 & 1\\ 1 & x & 1 & 1\\ 1 & 1 & x & 1\\ x+3 & x+3 & x+3 & x+3 \end{bmatrix}\xrightarrow{R_{4}\rightarrow \frac{1}{x+3} R_{4}}\begin{bmatrix} x & 1 & 1 & 1\\ 1 & x & 1 & 1\\ 1 & 1 & x & 1\\ 1 & 1 & 1 & 1 \end{bmatrix} \end{equation*} \]
Step-3
We can use the last row to eliminate a lot of entries in the first three rows:
\[ \begin{equation*} \begin{bmatrix} x & 1 & 1 & 1\\ 1 & x & 1 & 1\\ 1 & 1 & x & 1\\ 1 & 1 & 1 & 1 \end{bmatrix}\rightarrow \begin{bmatrix} x-1 & 0 & 0 & 0\\ 0 & x-1 & 0 & 0\\ 0 & 0 & x-1 & 0\\ 1 & 1 & 1 & 1 \end{bmatrix} \end{equation*} \]
Step-4
Since \(\displaystyle x\neq 1\), we can divide by \(\displaystyle x-1\) in each of the first three rows:
\[ \begin{equation*} \begin{bmatrix} x-1 & 0 & 0 & 0\\ 0 & x-1 & 0 & 0\\ 0 & 0 & x-1 & 0\\ 1 & 1 & 1 & 1 \end{bmatrix}\rightarrow \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 1 & 1 & 1 & 1 \end{bmatrix} \end{equation*} \]
After a few more operations, we get the identity matrix. This shows that \(\displaystyle A\) has rank \(\displaystyle 4\) when \(\displaystyle x\neq 1\). These steps readily generalise to any \(\displaystyle n\).