Question-12
limit
If \(\displaystyle \lim\limits _{x\rightarrow 4} \ \frac{f( x) -5}{x-2} =1\), find \(\displaystyle \lim\limits _{x\rightarrow 4} \ f( x)\).
Hint
Use the property of limits (arithmetic).
Answer
\(7\)
Solution
Using the multiplicative property of limits:
\[ \begin{equation*} \begin{aligned} \lim\limits _{x\rightarrow 4} \ f( x) -5 & =\lim\limits _{x\rightarrow 4} \ \frac{f( x) -5}{x-2} \cdot ( x-2)\\ & =\lim\limits _{x\rightarrow 4} \ \frac{f( x) -5}{x-2} \cdot \lim\limits _{x\rightarrow 4} \ x-2\\ & =1\times 2\\ & =2 \end{aligned} \end{equation*} \]
Therefore, \(\displaystyle \lim\limits _{x\rightarrow 4} \ f( x) =7\).