Question-14
taylor series
Find the best linear approximation of \(\displaystyle f( x) =\sqrt{1+x}\) at \(\displaystyle x=0\).
Answer
Solution
Using Taylor series, the best linear approximation of \(\displaystyle f\) at \(\displaystyle x=a\) is given by:
\[ \begin{equation*} L( x)\Bigl|_{x=a} =f( a) +f^{\prime }( a)( x-a) \end{equation*} \]
For \(\displaystyle x=0\) and \(\displaystyle f( x) =\sqrt{1+x}\), we have:
\[ \begin{equation*} L( x)\Bigl|_{x=0} =1+\frac{x}{2} \end{equation*} \]
We have used the fact that \(\displaystyle f^{\prime }( x) =\frac{1}{2\sqrt{1+x}}\) and \(\displaystyle f^{\prime }( 0) =\frac{1}{2}\).