Question-45
Consider:
\[ \begin{equation*} f( x) =\ln\left( x+\sqrt{1+x^{2}} \ \right) \end{equation*} \]
Multiply the quantity inside the logarithm for \(f(x)\) and \(f(-x)\)
Let us multiply the terms inside the logarithm for \(\displaystyle f( x)\) and \(\displaystyle f( -x)\). This seems like a reasonable thing to do since we know that \(\displaystyle \ln( ab) =\ln( a) +\ln( b)\):
\[ \begin{equation*} \left(\sqrt{1+x^{2}} +x\right)\left(\sqrt{1+x^{2}} -x\right) =1 \end{equation*} \]
This is convenient. Since both products are positive for all \(\displaystyle x\), we can take \(\displaystyle \ln\) on both sides:
\[ \begin{equation*} \ln\left(\sqrt{1+x^{2}} +x\right) =-\ln\left(\sqrt{1+x^{2}} -x\right) \end{equation*} \]
This is nothing but:
\[ \begin{equation*} f( x) =-f( -x) \end{equation*} \]
This shows that \(\displaystyle f\) is an odd function.