Question-10

taylor series

Select all options that give the correct the Taylor series expansion of the function on the left around the point \(0\).

The Taylor series expansion of \(\displaystyle f( x)\) around \(\displaystyle x=a\) is given by:

\[ f( x) =\frac{f( a)}{0!} +\frac{f^{\prime }( a)}{1!}( x-a) +\frac{f^{\prime \prime }( a)}{2!}( x-a)^{2} +\cdots \]

For \(\displaystyle \sin x\) and \(\displaystyle \cos x\), this becomes:

\[ \begin{aligned} \sin( x) & =x-\frac{x^{3}}{3!} +\frac{x^{5}}{5!} -\cdots \\ & \\ \cos( x) & =1-\frac{x^{2}}{2!} +\frac{x^{4}}{4!} \end{aligned} \]