Question-10
taylor series
Select all options that give the correct the Taylor series expansion of the function on the left around the point \(0\).
Answer
Solution
The Taylor series expansion of \(\displaystyle f( x)\) around \(\displaystyle x=a\) is given by:
\[ f( x) =\frac{f( a)}{0!} +\frac{f^{\prime }( a)}{1!}( x-a) +\frac{f^{\prime \prime }( a)}{2!}( x-a)^{2} +\cdots \]
For \(\displaystyle \sin x\) and \(\displaystyle \cos x\), this becomes:
\[ \begin{aligned} \sin( x) & =x-\frac{x^{3}}{3!} +\frac{x^{5}}{5!} -\cdots \\ & \\ \cos( x) & =1-\frac{x^{2}}{2!} +\frac{x^{4}}{4!} \end{aligned} \]