Question-34
algebra
aptitude
For positive real variables \(p\) and \(q\), if
\[ \log(p^{2}+q^{2})=\log p+\log q+2 \log 3 \]
then, the value of \(\cfrac{p^{4}+q^{4}}{p^{2}q^{2}}\) is
NoteAnswer
NoteSoluton
We have:
\[ \begin{aligned} \log\left( p^{2} +q^{2}\right) & =\log p+\log q+2\log 3\\ & \\ \log\left(\frac{p^{2} +q^{2}}{pq}\right) & =\log 9 \end{aligned} \]
Multiplying both sides by \(\displaystyle 2\):
\[ \begin{aligned} \log\left(\frac{p^{4} +q^{4} +2p^{2} q^{2}}{p^{2} q^{2}}\right) & =\log 81 \end{aligned} \]
Since \(\displaystyle \log\)is a one-one function, we have:
\[ \begin{aligned} \frac{p^{4} +q^{4}}{p^{2} q^{2}} +2 & =81\\ & \\ \frac{p^{4} +q^{4}}{p^{2} q^{2}} & =79 \end{aligned} \]